
三陰性轉移性乳癌治療的最新進展

張端瑩醫師, 腫瘤醫學部, NTUH, NTUCC

Historic Timeline of Therapies Specifically Targeting the ER Pathways for HR+ Breast Cancer

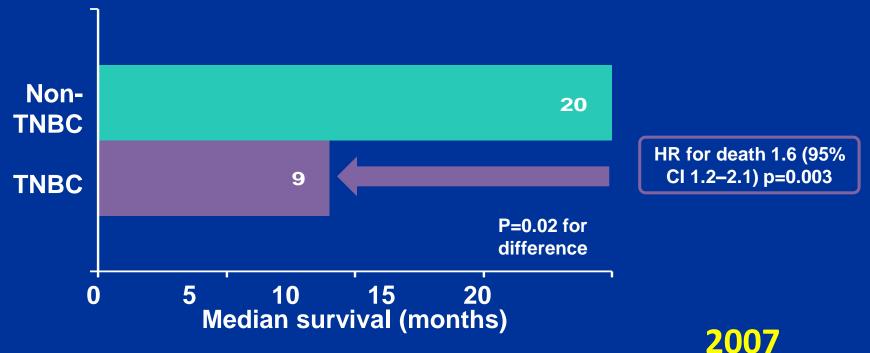
何謂三陰性(Triple-Negative)?

• Estrogen receptor (ER) — negative

• Progesterone receptor (PR) — negative

• Human Epidermal Receptor type 2 (HER2) — negative

TNBC Characteristics


- ~15% of all breast cancers
- Younger age 較年輕
- High grade 高惡性度
- Higher recurrence rate 高復發率
- Higher disease burden

• Higher chance of BRCA1 mutation

For quite a long period, we have only chemotherapies

TNBC Significantly Shortens Survival in Patients with Metastatic Disease

Significantly Shorter Survival Following Recurrence in Patients with TNBC¹

HR = hazard ratio 1. Dent et al. Clin Cancer Res 2007

Chemotherapies

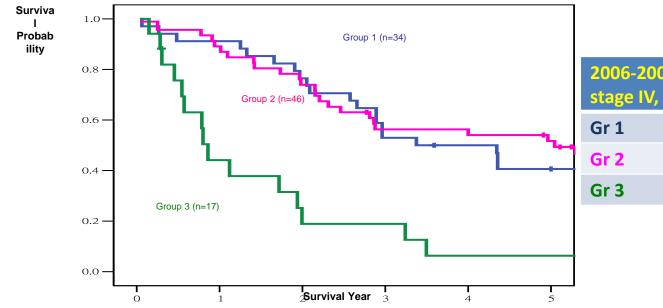
- Anthracyclines
 - Doxorubicin
 - Epirubicin
 - Liposomal doxorubicin
- Anti-microtubules
 - Paclitaxel
 - Docetaxel
 - Vinorelbine
 - Eribulin
- Topoisomerase II
 - etoposide

Bevacizumab

- Anti-metabolites
 - Fluorouracil
 - Capecitabine
 - Gemcitabine
 - Methotrexate
- Alkylating agents
 - Cyclophosphamide
 - Mitomycin C
- Platinum
 - cisplatin
 - carboplatin

TNBC: Lack of specific weapons

ER/PR(+) disease

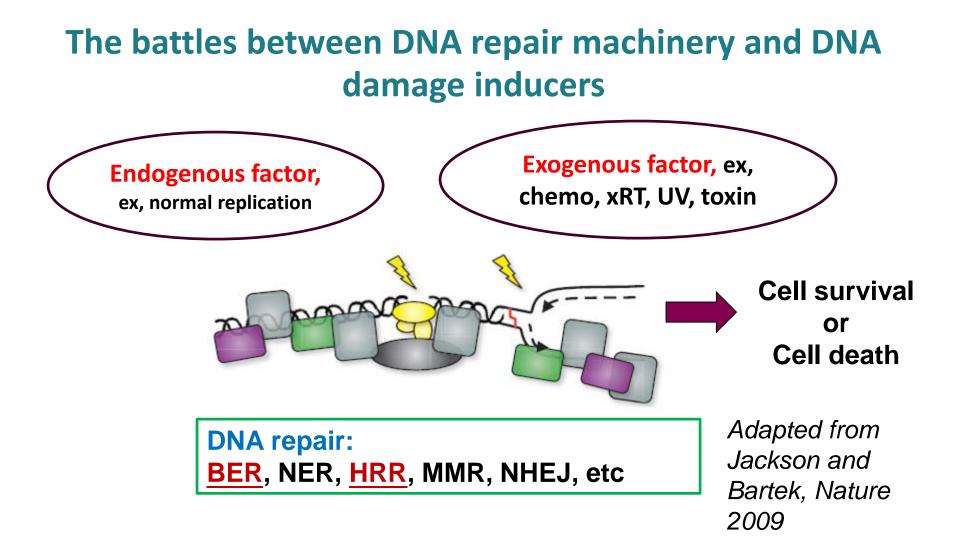

- Endocrine therapy
 - Tamoxifen, LHRHa
 - Aromatase inhibitors
 - Fulvestrant
 - Progesterone derivatives
- Targeted therapies
 - mTOR inhibitors
 - CDK4/6 inhibitors
 - PI3K inhibitors

HER2(+) disease

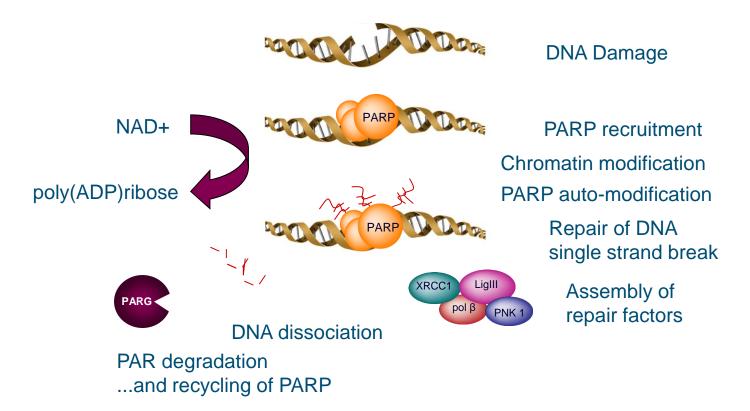
- Trastuzumab
- Lapatinib
- Pertuzumab
- T-DM1
- Ongoing, such as neratinib, tucatinib

TNBC— Worse Outcome

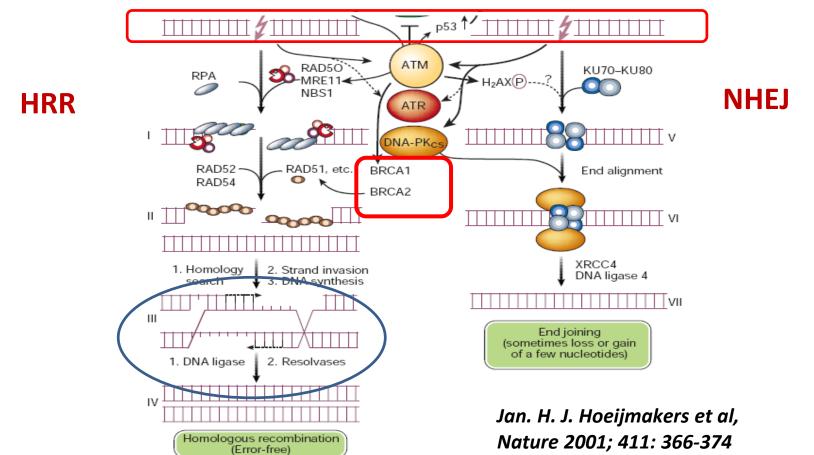
台大醫院第四期乳癌五年存活率

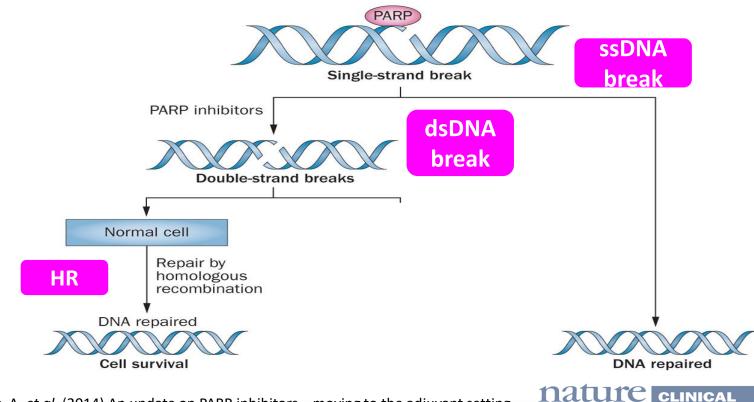

2006-2008 NTUH BC patients stage IV, N=97							
Gr 1	ER (+)/HER2(-)						
Gr 2	HER2 (+)						
Gr 3	Triple negative						

Finally, some advances in TNBC!

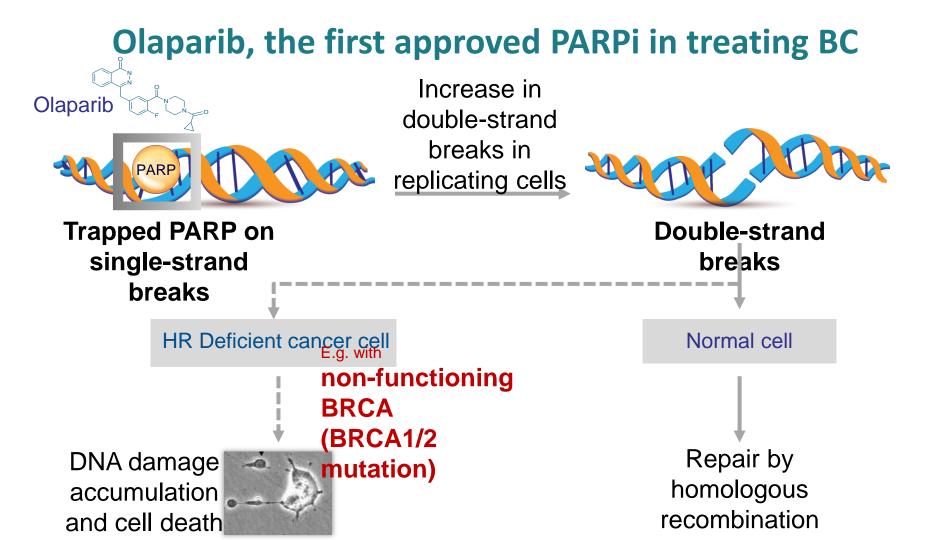

Recent Progress

- Targeted therapy (2018)
 - PARPi for gBRCA1/2 mutations
- 1st immunotherapy (2019)
 Atezolizumab (anti-PDL1)
- ADC in development
 - sacitumumab govitecan


PARP INHIBITORS


PARP, a key player in ssDNA break (BER)

BRCA1 and BRCA2 play a key role in HRR (DSB) pathway

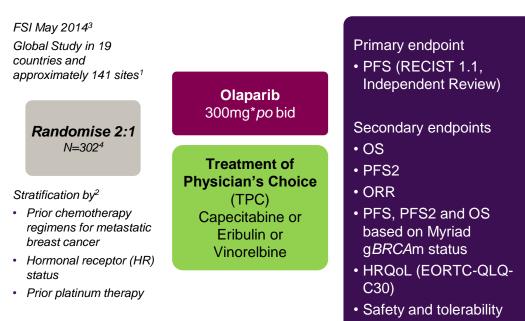

PARP inhibitors and Synthetic Lethality

ONCOLOGY

REVIEW

Sonnenblick, A. *et al.* (2014) An update on PARP inhibitors—moving to the adjuvant setting *Nat. Rev. Clin. Oncol.* doi:10.1038/nrclinonc.2014.163

OlympiAD is a Phase III study investigating olaparib vs TPC in gBRCAm HER2-negative metastatic breast cancer¹



and taxane

HER2 negative (TNBC or ER/PR+)

in the advanced cotting

Prior Anthra + Taxane \leq 2L Chemo for MBC \geq 1L ET for ER(+)

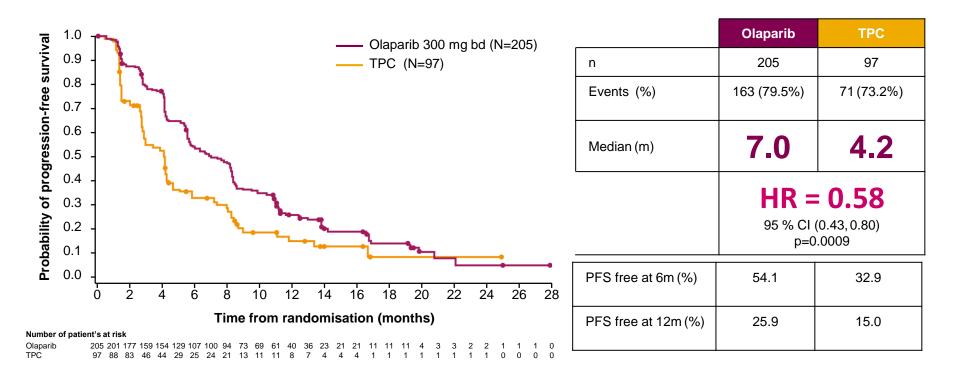
1. https://clinicaltrials.gov/ct2/show/NCT02000622; 2. Robson et al. Poster OT1-1-04, San Antonio Breast Cancer Symposium 2014; 3. AZ data on file (2017),

4. Robson et al. N Engl J Med. 2017; 377:523-533

For internal pre approval training only and not to be shared or distributed outside of AstraZeneca 2019/03/15_ONC_TW-8213

Patient Characteristics

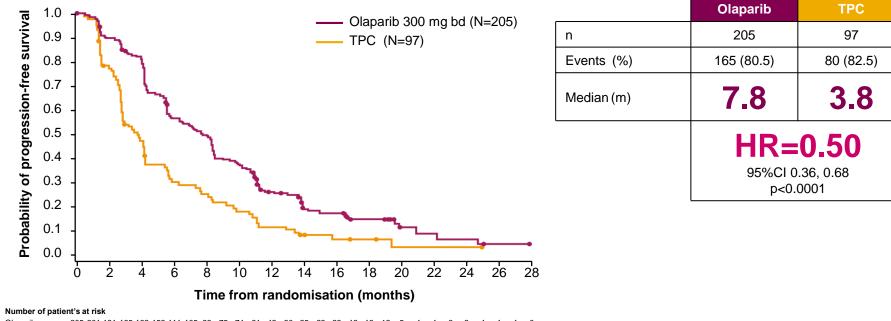
	Olaparib (N=205)	Chemotherapy TPC (N=97)
Age, years (median, range)	44 (22–76)	45 (24–68)
Male, n (%)	5 (2)	2 (2)
White race, n (%)	134 (65)	63 (65)
BRCA mutation status, n (%)		
BRCA1	117 (57)	51 (53)
BRCA2	84 (41)	46 (47)
Both	4 (2)	0
Hormonal receptor status, n (%)		
ER and/or PgR positive	103 (50)	49 (51)
TNBC	102 (50)	48 (49)
Prior chemotherapy for metastasis, n (%)	146 (71)	69 (71)
Prior platinum treatment, n (%)	60 (29)	26 (27)


Patient Characteristics

		Olaparib (205), n (%)	TPC (97) <i>,</i> n (%)
ECOG	0	148 (72.2)	62 (63.9)
No. of Met sites	1	46(22.4%)	25 (25.8%)
	≥2	159 (77.6%)	72 (74.2%)
Sites of mets	Bone/local	16 (7.8%)	6 (6.2%)
	CNS	17 (8.3%)	8 (8.2%)
De novo stage IV MBC		26 (12.7%)	12(12.4%)
Progression at randomization		159 (77.6%)	73 (75.3%)

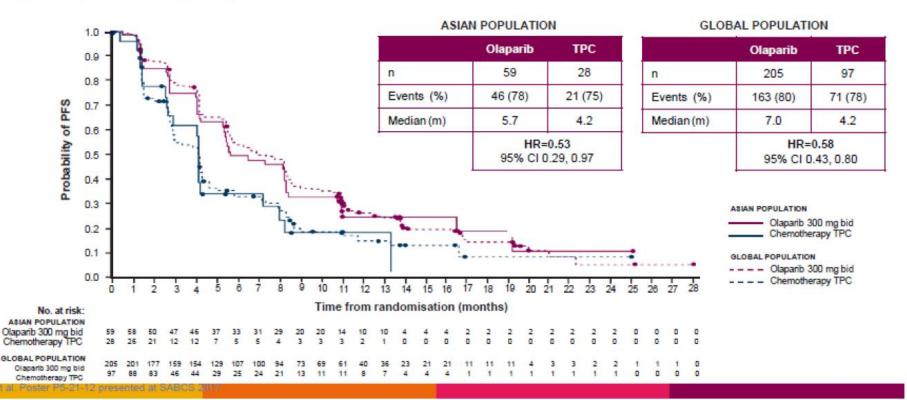
Data Cutoff: 9th December 2016

1 Robson et al. N Engl J Med. 2017; 377:523-533; 2. AZ data on file (2017)

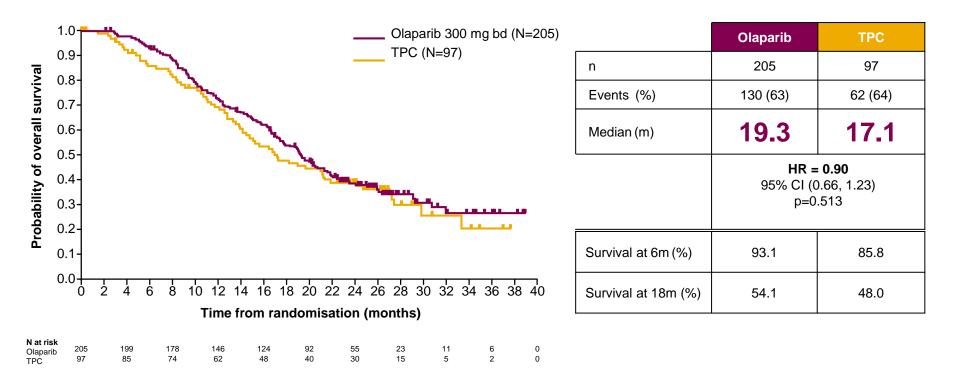

Primary endpoint: PFS assessed by BICR

1. Robson et al. N Engl J Med. 2017; 377:523-533; 2. AZ data on file (2017)

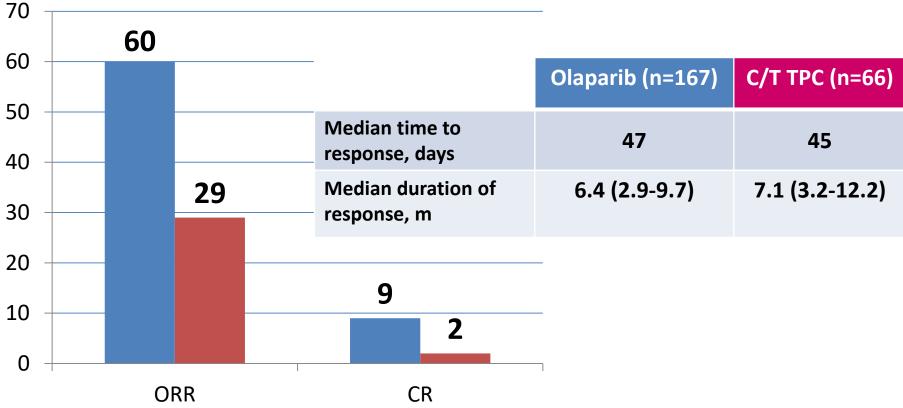
For internal pre approval training only and not to be shared or distributed outside of AstraZeneca


Investigator-assessed PFS: consistent and supportive

Olaparib	205	201	181	165	162	153	111	105	93	75	74	61	42	30	25	23	23	13	13	12	5	4	4	3	3	1	1	1	0
TPC	97	87	68	46	40	31	25	24	21	18	15	13	10	5	5	5	4	3	3	2	1	1	1	1	1	0	0	0	0


In this Asian subpopulation, PFS by BICR was prolonged in patients receiving olaparib compared with those treated with TPC

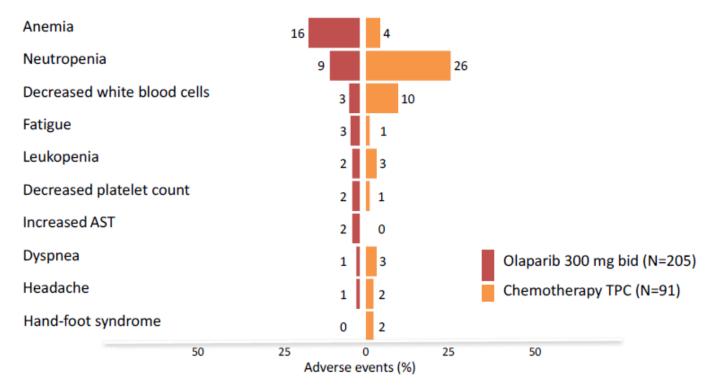
Data in Asian patients was similar to that observed in the global population (median 7.0 vs 4.2 months; HR 0.58; 95% CI 0.43, 0.80).¹



	Subgroup		Standard Therapy		Ratio <mark>(9</mark> 5% CI)	5% CI)			
		no. of patients with	events/total no. (%)	J					
PFS: Subgroup	All patients	163/205 (79.5)	71/97 (73.2)			0.58 (0.43-0.80)			
115. Subgroup	Previous chemotherapy for metastatic breast cancer								
	Yes	119/146 (81.5)	51/69 (73.9)	•	-	0.65 (0.47-0.91)			
analysis	No	44/59 (74.6)	20/28 (71.4)		-	0.56 (0.34-0.98)			
anarysis	Hormone-receptor status								
	Hormone-receptor positive	82/103 (79.6)	31/49 (63.3)		•	0.82 (0.55–1.26)			
	Triple negative	81/102 (79.4)	40/48 (83.3)			0.43 (0.29–0.63)			
	Previous platinum-based therapy for breast cano								
	Yes	50/60 (83.3)	21/26 (80.8)			0.67 (0.41–1.14)			
	No	113/145 (77.9)	50/71 (70.4)			0.60 (0.43–0.84)			
Hormone-receptor status									
Hormone-receptor status			i						
Hormone-receptor positiv	e	_			0.82	2 (0.55-1.26)			
rionnone receptor positi	·								
Triple negative			1		0.43	3 (0.29-0.63)			
	<u> </u>					· · · ·			
	Age	01/01 (70.2)	50/15 (00.7)			0.00 (0.15 1.07)			
	<65 yr	154/194 (79.4)	67/93 (72.0)	_	-	0.66 (0.49-0.88)			
	≥65 yr	9/11 (81.8)	4/4 (100.0)			Not calculated			
	Region								
	Asia	46/59 (78.0)	21/28 (75.0)			0.57 (0.34–0.97)			
	Europe	77/97 (79.4)	34/35 (75.6)		•	0.71 (0.48–1.08)			
	North America and South America	40/49 (81.6)	16/24 (66.7)		-	0.39 (0.22–0.73)			
	Race								
	White	109/134 (81.3)	47/63 (74.6)			0.67 (0.48–0.95)			
	Other	54/71 (76.1)	24/34 (70.6)		-	0.51 (0.32-0.85)			
			0.125	0.250 0.500	1.000 2.0	000			
Rohson et	al. NEJM 2017			Olaparib Better	Standard Therapy Better				

No significant difference in OS so far

Objective Response by BICR


OLYMPIAD: Adverse events (any grade) in ≥15% of patients

Irrespective of causality. MedDRA preferred terms for adverse events have been combined for 1) anemia and 2) neutropenia ALT, alanine aminotransferase; AST, aspartate aminotransferase

Robson, NEJM 2017

Grade ≥3 AE in ≥ 2% patients in either arm

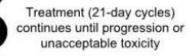
Irrespective of causality. MedDRA preferred terms for adverse events have been combined for 1) anemia and 2) neutropenia ALT, alanine aminotransferase; AST, aspartate aminotransferase

Robson et al. NEJM 2017

TEAEs led to discontinuations in 5% of patients treated with olaparib¹

Additionally 36% in the olaparib group received dose interruptions and 25% received dose reductions due to TEAEs¹

	Olaparib (N=205) n (%)	TPC (N=91) n (%)
Dose interruption	74 (36.1)	26 (28.6)
Dose reduction	52 (25.4)	28 (30.8)
Mean daily dose in mg	571.5	NA
Treatment discontinuation	10 (<mark>4.9</mark>)	Adapted with permission ¹


TEAE=treatment-emergent adverse event Data Cutoff: 25 September 2017 1. Robson et al. AACR, 2018

Study Design: EMBRACA

gBRCAm (+) HER2(-) Prior Anthra + Taxane ≤ 3L Chemo for MBC no active CNS mets

> Phase 3, international, open-label study randomized 431 patients in 16 countries and 145 sites

Physician's choice of therapy (PCT)[‡]: capecitabine, eribulin, gemcitabine, or vinorelbine

Primary endpoint

- Progression-free survival by RECIST by
- blinded central review

Key secondary efficacy endpoints

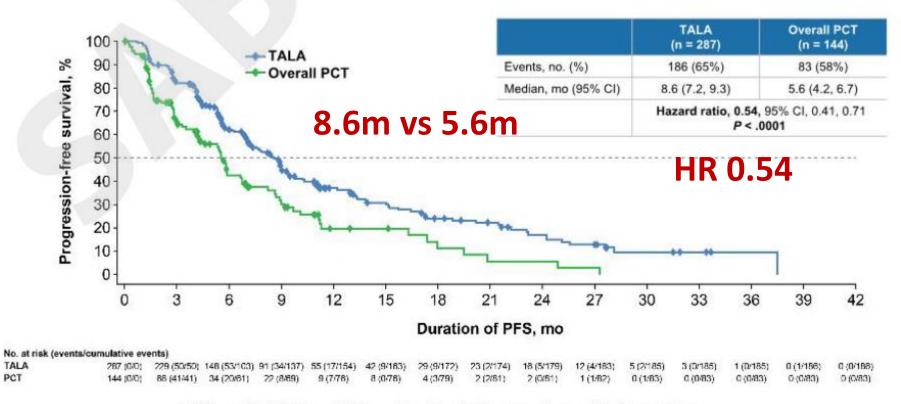
- **Overall survival (OS)**
- ORR by investigator

Safety

Exploratory endpoints

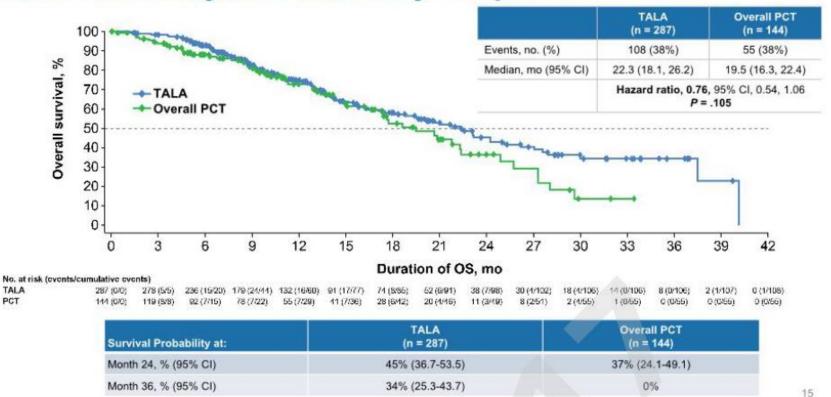
- Duration of response (DOR) for objective responders
- Quality of life (QoL; EORTC QLQ-C30, QLQ-BR23)

Abbreviations: CNS, central nervous system; EORTC, European Organisation for Research and Treatment of Cancer; HER2, human epidermal growth factor receptor 2; mets, metastases; PO, orally (per os); QLQ-BR23, Quality of Life Questionnaire breast cancer module; QLQ-C30, Quality of Life Questionnaire Core 30; R, randomized; RECIST, Response Evaluation Criteria In Solid Tumors version 1.1; TNBC, triple-negative breast cancer.


*Additional inclusion criteria included: no more than 3 prior cytotoxic chemotherapy regimens for locally advanced or metastatic disease; prior treatment with a taxane and/or anthracycline unless medically contraindicated. THER2-positive disease is excluded. Physician's choice of therapy must be determined prior to randomization.

www.clinicaltriats.gov (NCT01945775)

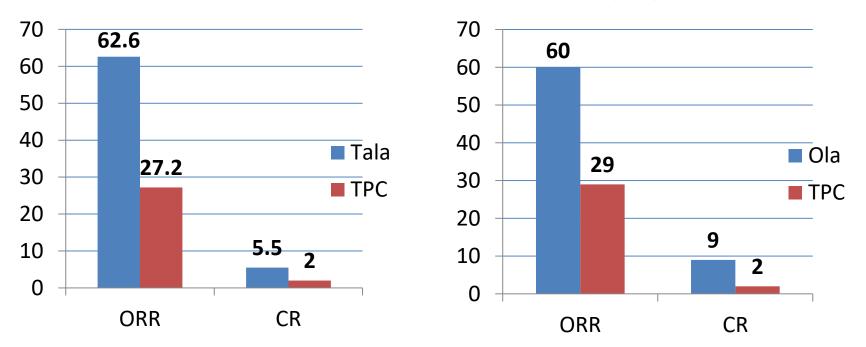
This presentation is the intellectual property of the author/presenter. Contact her at Jlitton@mdanderson.org for permission to reprint and/or distribute. Litton et al. SABCS 2017


R 2:1

Primary Endpoint: PFS by Blinded Central Review

Litton et al. SABCS 2017 1-Year PFS 37 vs 20% Median follow-up time: 11.2 months

Interim OS Analysis: Secondary Endpoint


This presentation is the intellectual property of the author/presenter. Contact her at jlitton@mdanderson.org for permission to reprint and/or distribute.

Litton et al. SABCS 2017

Objective Response by BICR

EMBRACA

OlympiAD

Robson et al. NEJM 2017, Litton et al. NEJM 2018 ³³

Grade \geq 3 adverse events in \geq 2% patients in either arm

PRESENTED AT: ASCO ANNUAL MEETING '17 #, Slides are the property of the author. Permission required for reuse.

Presented by: Mark Robson, MD

19

6/4/2017

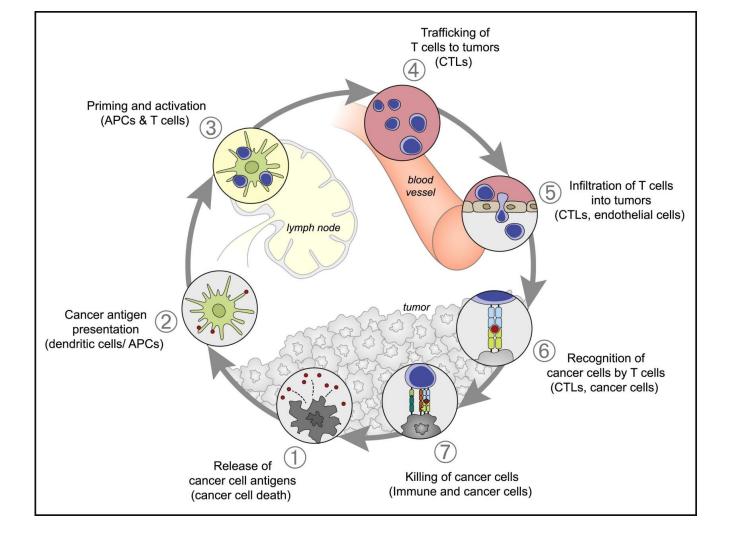
Presented By Mark Robson at 2017 ASCO Annual Meeting

Tolerance profile of talazoparib

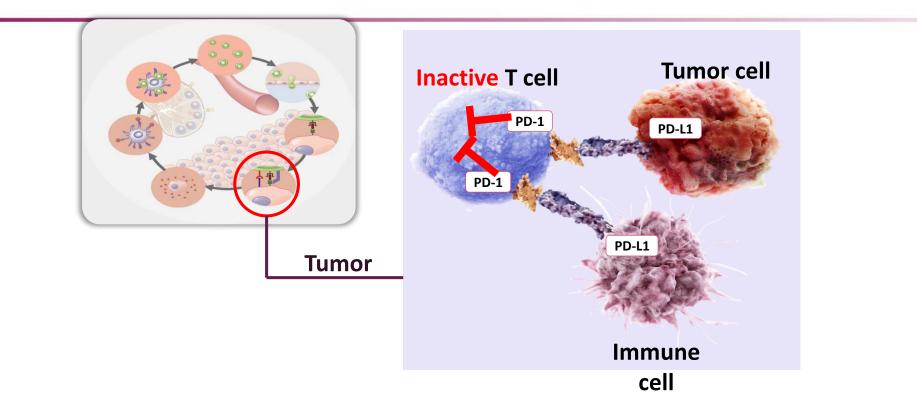
	Talazoparib (N=286)	TPC (N=126)
Dose modification (interruption/reduction)	66%	60%
Median dose intensity	87.2%	NA
Grade ¾ SAE	25.5%	25.4%
Drug related SAE	9.1%	8.7%
Permanent discontinuation due to AE	5.9%	8.7%

Litton JK et al. NEJM 2018

National


Network[®]

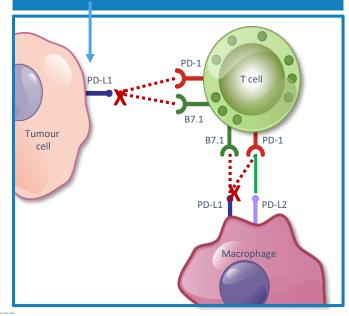
NCCN Guidelines Version 1.2019 Comprehensive Invasive Breast Cancer


CHEMOTHERAPY REGIMENS FOR RECURRENT OR STAGE IV (M1) DISEASE^{a,b}

	HER2-Negative	HER2-Positive ^g
Preferred regimens Anthracyclines Doxorubicin Liposomal doxorubicin Taxanes Paclitaxel	 PARP inhibitors (options for patients with HER2- negative tumors and germline BRCA1/2 mutation)^d Olaparib^d (category 1) Talazoparib^d (category 1) 	Preferred regimens • Pertuzumab + trastuzumab + docetaxel (category 1) ^h • Pertuzumab + trastuzumab + paclitaxel ^g <u>Other recommended regimens</u> : • Ado-trastuzumab emtansine (T-DM1)
 Anti-metabolites Capecitabine Gemcitabine Microtubule inhibitors Vinorelbine Eribulin 	 Platinum (option for patients with triple-negative tumors and germline <i>BRCA1/2</i> mutation)^d Carboplatin Cisplatin Atezolizumab + albumin-bound paclitaxel (option for patients with PD-L1-positive TNBC)^e 	 Trastuzumab + paclitaxel^h ± carboplatin Trastuzumab + docetaxel^h Trastuzumab + vinorelbine^h Trastuzumab + capecitabine Lapatinib + capecitabine Trastuzumab + lapatinib (without cytotoxic therapy) Trastuzumab + other agents^{h,i,j}
Other recommended regim • Cyclophosphamide • Docetaxel • Albumin-bound paclitaxel	• Epirubicin • Ixabepilone	
Useful in certain circumsta	nces ^c	
 AC (doxorubicin/cyclopho EC (epirubicin/cyclophos CMF (cyclophosphamide/ methotrexate/fluorouracil 	phamide) • GT (gemcitabine/paclitaxel) • Gemcitabine/carboplatin	

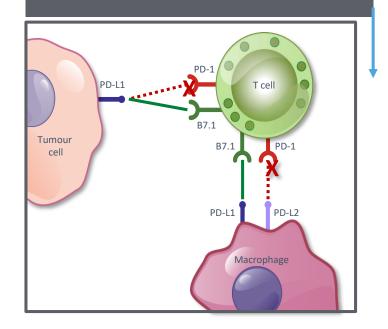
Reproduced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines") for Breast Cancer V1.2019. © National Comprehensive Cancer Network, Inc 2019. All rights reserved. Accessed March 18, 2019. To view the most recent and complete version of the guideline, go online to NCCN.org.

Binding of PD-L1 to PD-1 can lead to the inhibition of T-cell activity

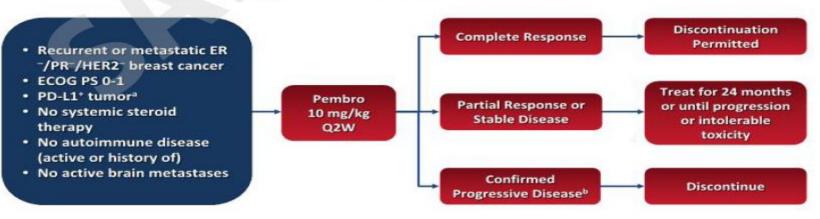

1.Chen, et al. *Clin Cancer Res* 2012 2.Herbst. et al. *Nature* 2014

3. Powles, et al. Nature 2014

Immune checkpoints inhibitors targeting PD-L1 and PD-1


Anti-PDL1

Targeting PD-L1 can block co-inhibitory signalling between the TC and both PD-1 and B7.1, preventing down-regulation of T- cell activity^{1–3}

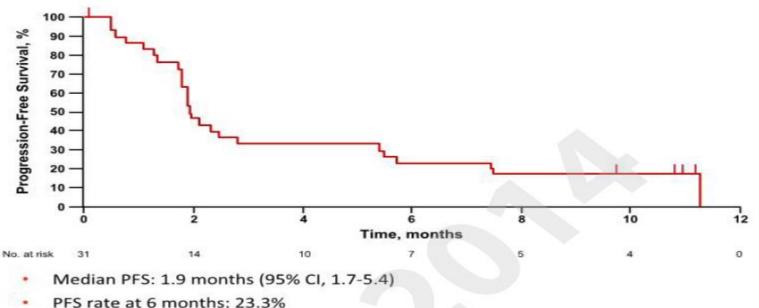

Anti-PD1

Targeting of PD-1 blocks co-inhibitory signalling between the TC and PD-1, sparing the interaction between the TC and B7.1¹⁻³

Pembrolizumab (anti-PD1 Ab)

Triple-Negative Breast Cancer Cohort

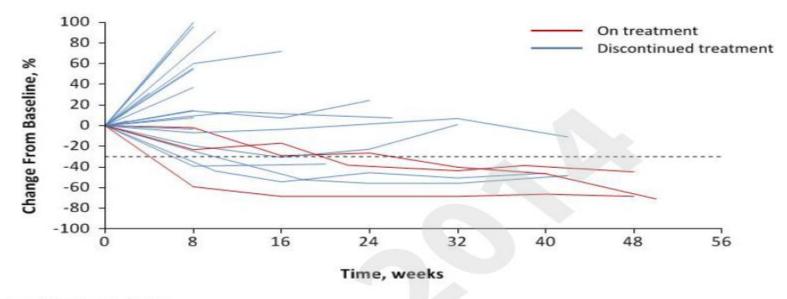
- PD-L1 positivity: 58% of all patients screened had PD-L1-positive tumors
- Treatment: 10 mg/kg IV Q2W
- Response assessment: Performed every 8 weeks per RECIST v1.1


*PD-L1 expression was assessed in archival tumor samples using a prototype IHC assay and the 22C3 antibody. Only patients with PD-L1 staining in the stroma or in ≥1% of tumor cells were eligible for enrollment.

^bIf clinically stable, patients are permitted to remain on pembrolizumab until progressive disease is confirmed on a second scan performed ≥4 weeks later. If progressive disease is confirmed, pembrolizumab is discontinued. An exception may be granted for patients with clinical stability or improvement after consultation with the sponsor.

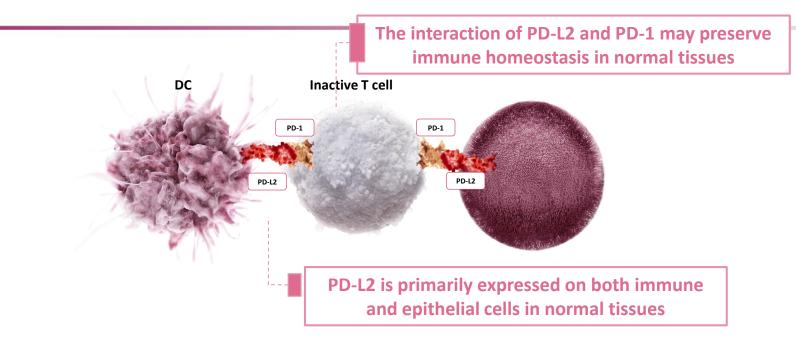
This presentation is the intellectual property of the presenter, Rita Nanda. Contact rnanda@medicine.bsd.uchicago.edu for permission to reprint and/or distribute.

Kaplan-Meier Estimate of PFS (RECIST v1.1, Central Review)



Analysis cut-off date: November 10, 2014.

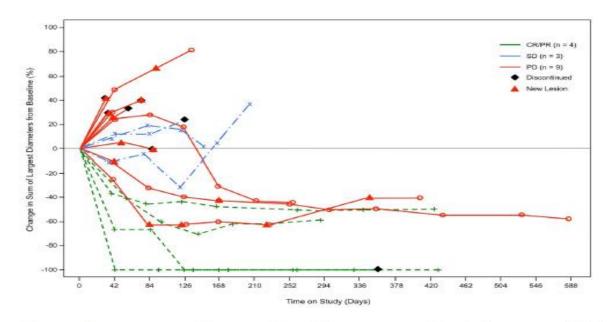
This presentation is the intellectual property of the presenter, Rita Nanda. Contact rnanda@medicine.bsd.uchicago.edu for permission to reprint and/or distribute.


Change From Baseline in Target Lesions Over Time (Central Review)

Analysis cut-off date: November 10, 2014.

This presentation is the intellectual property of the presenter, Rita Nanda. Contact rnanda@medicine.bsd.uchicago.edu for permission to reprint and/or distribute.

atezolizumab (anti-PDL1 Ab)

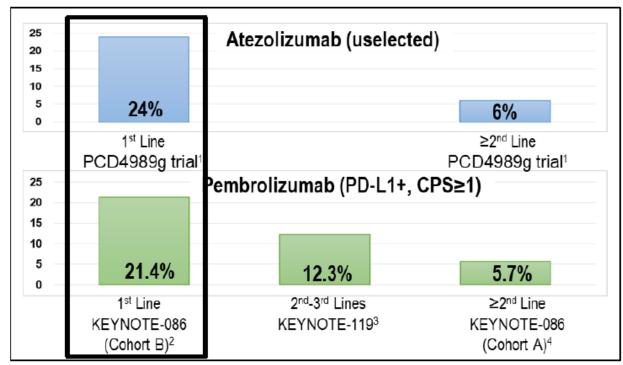


TECENTRIQ can preserve immune homeostasis in normal tissue by sparing the interaction of PD-L2 (on normal tissue) with PD-1 (on T cells)

1.Latchman, et al. Nat Immunol 2001; 2.Brown, et al. J Immunol 2003; 3.Matsumoto, et al. Biochem Biophys ResCommun 2008;4.Akbari, et al. Mucosal Immunol 2010

5.Chen, et al. Clin Cancer Res 2012; 6.Schmid, et al. J Clin Oncol 2016

MPDL3280A: Tumor Burden Over Time Efficacy-evaluable population with TNBC

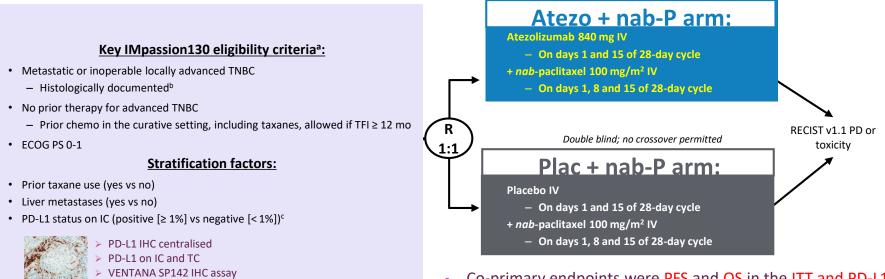


- Median duration of response has not yet been reached (range: 18 to 56+ wks)
- Median duration of survival follow-up is 40 wks (range: 2+ to 85+ wks)

Investigator-assessed confirmed ORRs per RECIST v1.1. Efficacy population includes patients dosed by July 21, 2014; clinical data cutoff, December 2, 2014. New lesions at consecutive visits for the same patient might be the same lesion.

Emens LA, et al. AACR 2015.

SHOULD WE GIVE IMMUNE CHECKPOINTS INHIBITORS IN FIRST LINE OR SUBSEQUENT LINES OF TREATMENT?



¹Emens L JAMA Oncol 2018; ²Adams S Ann Oncol 2019; ³Cortes J ESMO LBA21; ⁴Adams S Ann Oncol 2019

This presentation is the intellectual property of the presenter. Contact bianchini.giampaolo@hsr.it for permission to reprint and/or distribute

IMpassion130: Phase III atezolizumab study in mTNBC

Multicentre, international, double-blind, placebo-controlled, randomised trial in more than 900 patients with advanced TNBC

- IC, tumour-infiltrating immune cell; TFI, treatment-free interval.
 - ^a ClinicalTrials.gov: NCT02425891.
 - ^b Locally evaluated per ASCO–College of American Pathologists (CAP) guidelines
 - ^c Centrally evaluated per VENTANA SP142 IHC assay (double blinded for PD-L1 status). ^d Radiological endpoints were investigator assessed (per RECIST v1.1).

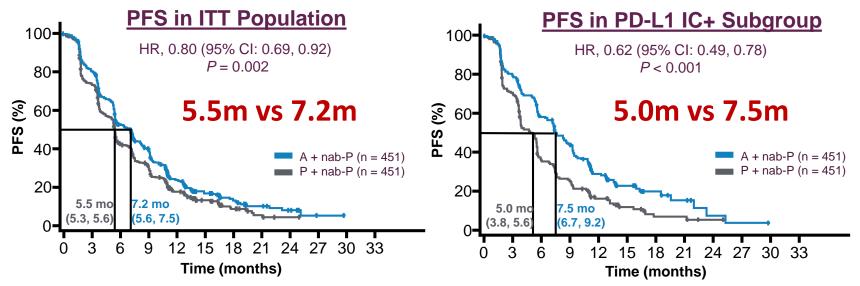
- Co-primary endpoints were PFS and OS in the ITT and PD-L1+ populations^d
- Key secondary efficacy endpoints (ORR and DOR) and safety were also evaluated

Baseline characteristics were well balanced between treatn

IMpassion130 included younger patients with good functional status, which is representative of the advanced TNBC population

Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)
Median age (range), y	55 (20-82)	56 (26-86)
Female, n (%)	448 (99%)	450 (100%)
Race, n (%) ^a		
White	308 (68%)	301 (67%)
Asian	85 (19%)	76 (17%)
Black/African American	26 (6%)	33 (7%)
Other/multiple	20 (4%)	26 (6%)
ECOG PS, n (%) ^{b,c}		
0	256 (57%)	270 (60%)
1	193 (43%)	179 (40%)
Prior (neo)adjuvant treatment, n (%)	284 (63%)	286 (63%)
Prior taxane	231 (51%)	230 (51%)
Prior anthracycline	243 (54%)	242 (54%)

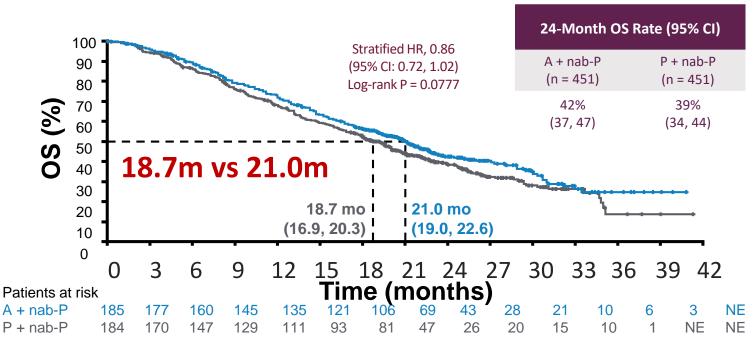
Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)
Metastatic disease, n (%)	404 (90%)	408 (91%)
No. of sites, n (%) ^d		
0-3	332 (74%)	341 (76%)
≥ 4	118 (26%)	108 (24%)
Site of metastatic disease, n (%)		
Lung	226 (50%)	242 (54%)
Bone	145 (32%)	141 (31%)
Liver	126 (28%)	118 (26%)
Brain	30 (7%)	31 (7%)
Lymph node only ^d	33 (7%)	23 (5%)
PD-L1+ (IC), n (%)	185 (41%)	184 (41%)


Data cutoff: 17 April 2018.

^a Race was unknown in 12 patients in the Atezo + nab-P arm and 15 in the Plac + nab-P arm b^{b} Of n = 450 in each arm.

^c ECOG PS before start of treatment was 2 in 1 patient per arm.

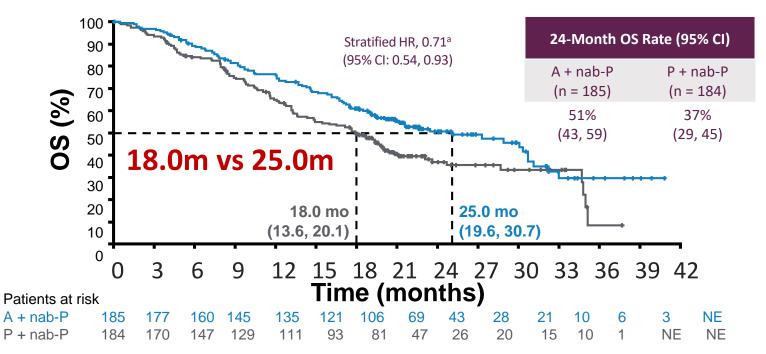
^d Of n = 450 in the Atezo + nab-P arm and n = 449 in the Plac + nab-P arm arm.


Primary endpoints: PFS

- Atezolizumab + nab-paclitaxel resulted in statistically significant PFS benefit in the ITT and PD-L1+ populations¹
- Based on these data,² atezolizumab + nab-paclitaxel received accelerated approval by the FDA³ and is recommended for patients with PD-L1 IC+ mTNBC in the NCCN⁴ and AGO⁵ guidelines

* TECENTRIQ is indicated for the treatment of PD-L1 population according to Tecentriq prescribing information in Taiwan.

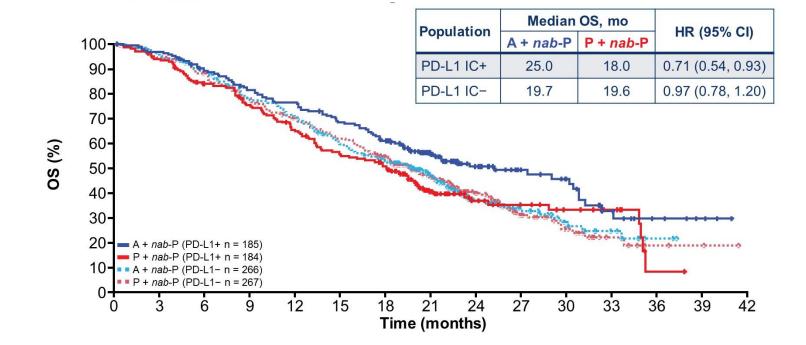
Primary endpoints: OS in ITT population



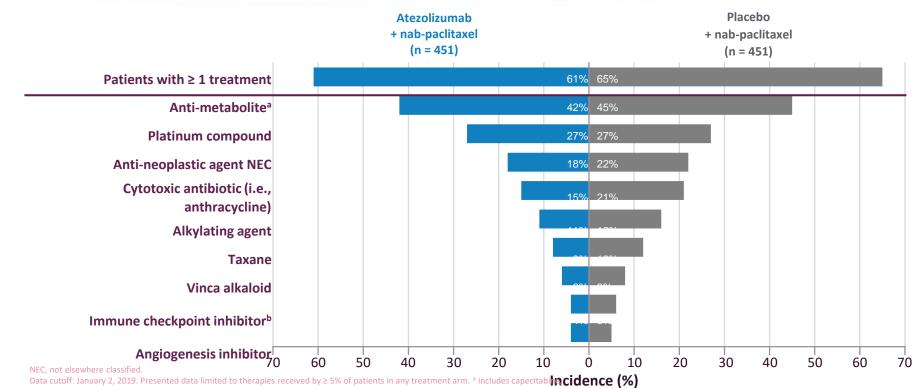
* TECENTRIQ is indicated for the treatment of PD-L1 population according to Tecentriq prescribing information in Taiwan.

NE, not estimable. Clinical cutoff date: January 2, 2019. Median PFS (95% CI) is indicated on the plot. Median FU (ITT): 18.0

mo

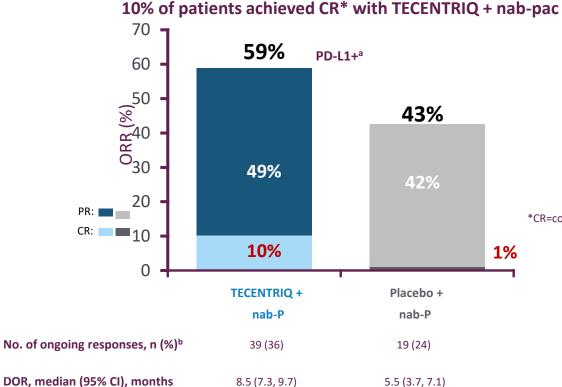

Primary endpoints : OS in PD-L1(+) population

^a Not formally tested due to pre-specified hierarchical analysis plan.

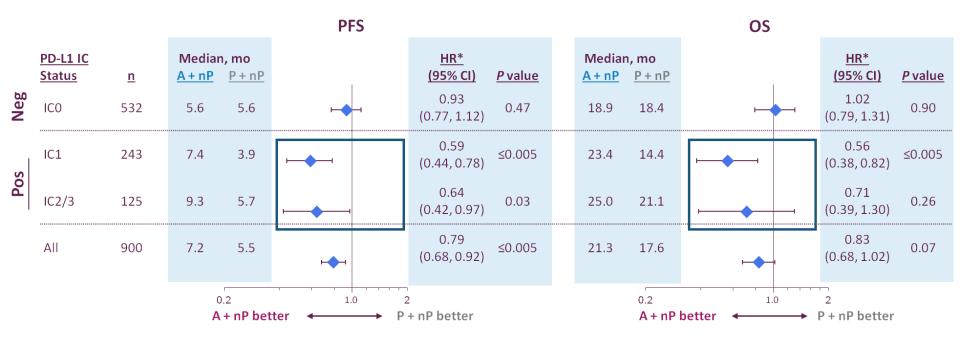

Clinical cutoff date: January 2, 2019. Median PFS (95% CI) is indicated on the plot. Median FU (ITT): 18.0 months.

Positive PD-L1 expression drove OS benefit with TECENTRIQ + nab-pac

Data cut off: January 2, 2019 Emens, et al. ASCO 2019 (IMpassion 130: Updated OS)


Subsequent Therapies

gemcitabine, gemcitabine hydrochloride, fluorouracil, methotrexate, cytarabine, decitabine, floxuridine, methotrexate sodium, pemetrexed,


tegafur. ^b Includes monoclonal antibodies targeting PD-L1, PD-1 and CTLA-4.

Secondary endpoints 1L PD-L1+ TNBC atezolizumab+ nab-pac ORR

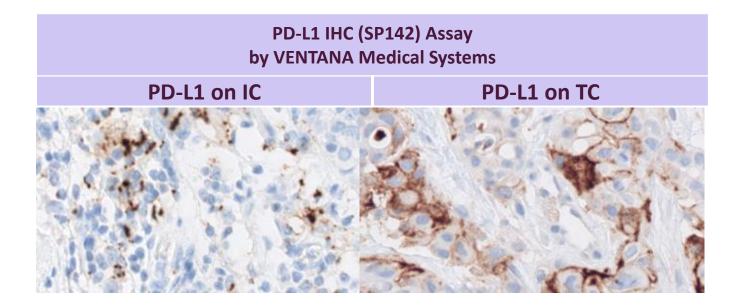
*CR=complete response; PR=partial response

Consistent clinical benefit with atezolizumab+ nab-paclitaxel was observed across all PD-L1 IC+ subgroups

Emens, et al. SABCS 2018 (Abstract GS1-04)

Safety summary

AE, n (%)	Atezo + nab-P (n = 452)	Plac + nab-P (n = 438)
All-cause AEs		
Any grade	449 (99%)	429 (98%)
Grade 3-4	220 (49%)	185 (42%)
Grade 5	6 (1%)	3 (1%)
Treatment-related AEs		
Any grade	436 (96%)	410 (94%)
Grade 3-4	179 (40%)	132 (30%)
Grade 5 ^a	3 (1%) ª	1 (< 1%) ª
Any grade serious AEs		
Serious AEs regardless of attribution	103 (23%)	80 (18%)
Treatment-related serious AEs	56 (12%)	32 (7%)
Any-grade AEs leading to any treatment discontinuation	72 (16%)	36 (8%)
Leading to atezo or plac discontinuation	29 (6%)	6 (1%)
Leading to nab-P discontinuation	72 (16%)	36 (8%)
Any-grade AEs leading to any dose reduction or interruption	212 (47%)	177 (40%)
Leading to atezo or plac dose interruption	139 (31%)	103 (24%)
Leading to nab-P dose reduction or interruption	195 (43%)	172 (39%)


Schmid P, et al. IMpassion130 ESMO 2018 (LBA1_PR) http://bit.ly/2DMhayg

AESIs suggestive of potential immune-related aetiology

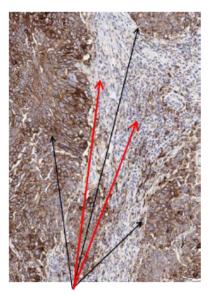
AESI, n (%)ª	Atezo + nab-P (n = 452)		Plac + nab-P (n = 438)	
	Any Grade	Grade 3-4	Any Grade	Grade 3-4
All	259 (57%)	34 (8%)	183 (42%)	19 (4%)
Important AESIs				
Hepatitis (all)	69 (15%)	23 (5%)	62 (14%)	13 (3%)
Hepatitis (diagnosis)	10 (2%)	6 (1%)	7 (2%)	1 (< 1%)
Hepatitis (lab abnormalities)	62 (14%)	17 (4%)	58 (13%)	12 (3%)
Hypothyroidism	78 (17%)	0	19 (4%)	0
Hyperthyroidism	20 (4%)	1 (< 1%)	6 (1%)	0
Pneumonitis	14 (3%)	1 (< 1%)	1 (< 1%)	0
Meningoencephalitisb	5 (1%)	0	2 (< 1%)	0
Colitis	5 (1%)	1 (< 1%)	3 (1%)	1 (< 1%)
Adrenal insufficiency	4 (1%)	1 (< 1%)	0	0
Pancreatitis	2 (< 1%)	1 (< 1%)	0	0
Diabetes mellitus	1 (< 1%)	1 (< 1%)	2 (< 1%)	1 (< 1%)
Nephritis	1 (< 1%)	0	0	0
Other AESIs ^c				
Rash	154 (34%)	4 (1%)	114 (26%)	2 (< 1%)
Infusion-related reactions	5 (1%)	0	5 (1%)	0

- 1 grade 5 AESI per arm (both treatment related):
 - Atezo + nab-P: autoimmune hepatitis
 - Plac + nab-P: hepatic failure
- All hypothyroidism AESIs were grade 1-2; none led to discontinuation
 - Atezo + nab-P: 17%
 - Plac + nab-P: 4%
- Pneumonitis was infrequent with only 1 grade 3-4 event in the Atezo
- + nab-P arm
 - Atezo + nab-P: 3%
 - Plac + nab-P: < 1%</p>
- Hepatitis rates were balanced

Examples using the VENTANA PD-L1 IHC (SP142) assay

Emens, et al. SABCS 2018 (Abstract GS1-04)

IMpassion130: PD-L1 expression on IC with SP142


PD-L1 IC staining criteria			
IC score	% of tumour area occupied by PDL1–expressing IC of any intensity	Scoring algorithm in IMpassion130	
IC3	≥10%		
IC2	≥5% and <10%	PD-L1 positive	
IC1	≥1% and <5%		
IC0	<1%	PD-L1 negative	

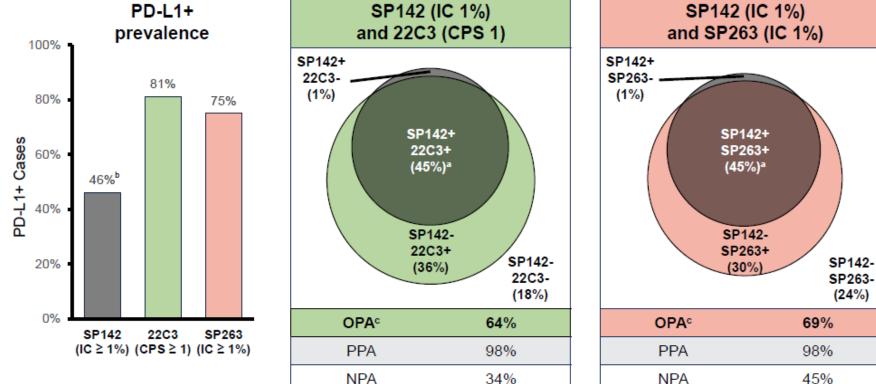
There are more than 1 PDL1 IHCs

Measure of PD-L1 expression: combined positive score (CPS)

PD-L1–staining cells (tumor cells, lymphocytes, macrophages) CPS = ----- × 100 Total # viable tumor cells

- Assessed centrally in newly obtained core or excisional biopsy from metastatic, not previously irradiated, tumor lesion using
 PD-L1 IHC 22C3 pharmDx (Agilent Technologies)
- Positive PD-L1 expression: CPS ≥10 and CPS ≥1

PD-L1 positive cells (Tumor Cells, Immune Cells)

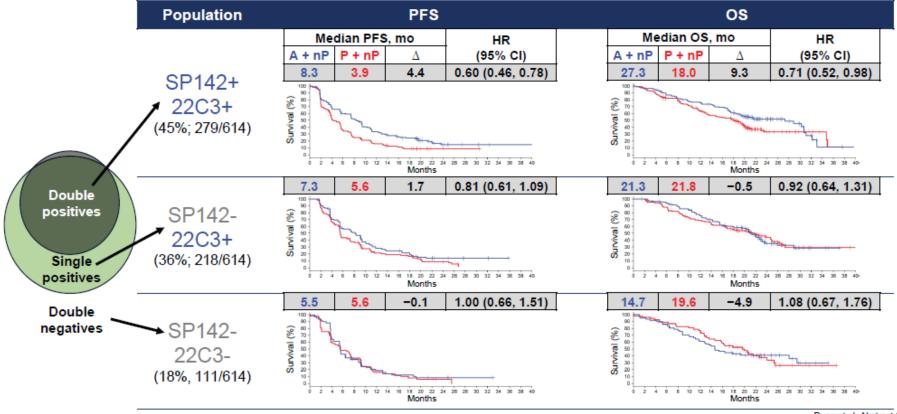

Performance of PD-L1 immunohistochemistry assays in unresectable locally advanced or metastatic triple-negative breast cancer: post hoc analysis of IMpassion130

Hope S. Rugo,¹ Sherene Loi,² Sylvia Adams,³ Peter Schmid,⁴ Andreas Schneeweiss,⁵ Carlos H. Barrios,⁶ Hiroji Iwata,⁷ Véronique Diéras,⁸ Eric P. Winer,⁹ Mark M. Kockx,¹⁰ Dieter Peeters,¹⁰ Stephen Y. Chui,¹¹ Jennifer C. Lin,¹¹ Anh Nguyen Duc,¹¹ Giuseppe Viale,¹² Luciana Molinero,¹¹ Leisha A. Emens¹³

¹University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA; ²Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ³NYU Langone Medical Center, New York, NY, USA; ⁴Barts Cancer Institute, Queen Mary University London, London, UK; ⁵University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany; ⁶Centro de Pesquisa Clínica, HSL, PUCRS, Porto Alegre, Brazil; ⁷Aichi Cancer Center Hospital, Nagoya, Japan; ⁸Department of Medical Oncology, Centre Eugène Marquis, Rennes, France; ⁹Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁰HistoGeneX NV, Antwerp, Belgium; ¹¹Genentech, Inc., South San Francisco, CA, USA; ¹²University of Milan, European Institute of Oncology IRCCS, Milan, Italy; ¹³University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA

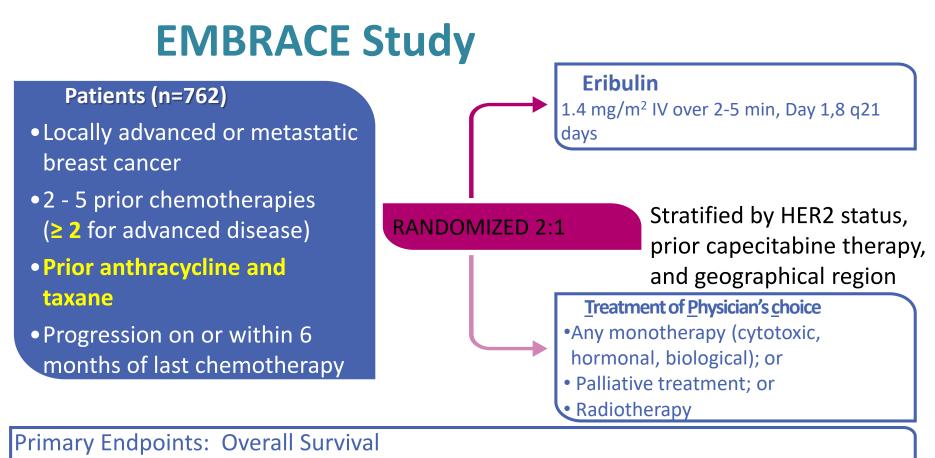
PD-L1 IHC assays: prevalence and analytical concordance

NPA, negative percentage agreement; OPA, overall percentage agreement; PPA, positive percentage agreement.


a > 97% of SP142+ samples included in 22C3+ or SP263+ samples. Compared with 41% in ITT (Schmid, New Engl J Med 2018).

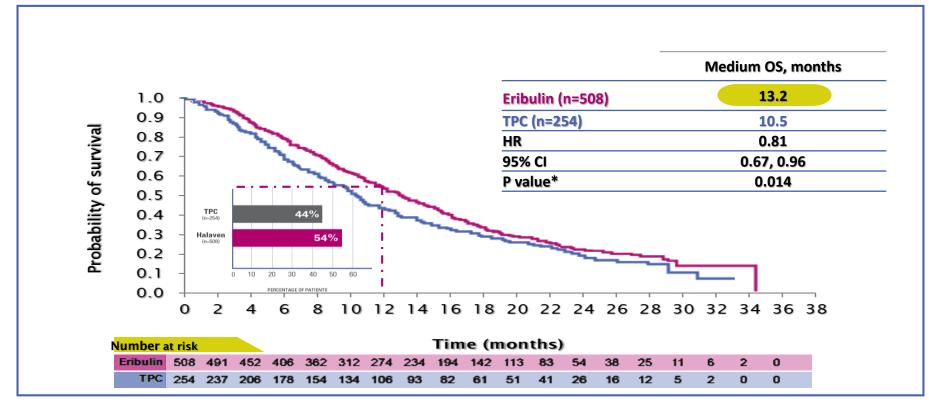
°≥ 90% OPA, PPA and NPA required for analytical concordance.

Rugo et al. Abstract 6571 IMpassion130 PD-L1 IHC https://bit.ly/30OmOqz


Clinical outcomes in BEP subpopulations defined by SP142 (IC 1%) and 22C3 (CPS 1)

Double positive: SP142 IC \geq 1%, 22C3 CPS \geq 1; single positive: SP142 IC < 1%, 22C3 CPS \geq 1; double negative: SP142 IC < 1%, 22C3 CPS < 1. HR adjusted for prior taxanes, presence of liver metastases, age and ECOG PS. Rugo et al. Abstract 6571 IMpassion130 PD-L1 IHC https://bit.ly/300mOqz

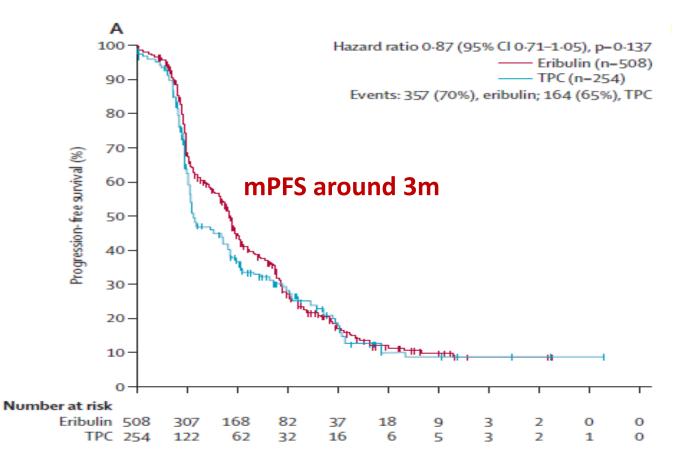
ANTIBODY-DRUG CONJUGATE

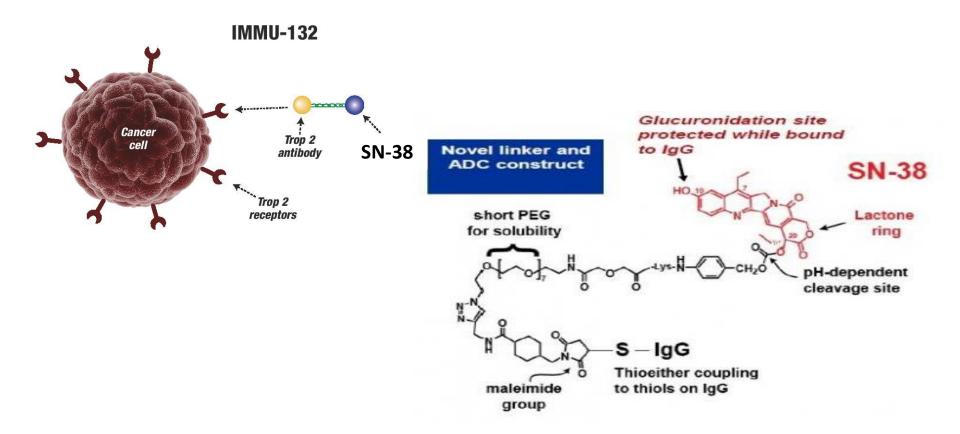


Secondary Endpoints: PFS, overall response rate, duration of response, safety

 $EMBRACE = \underline{E}$ isai <u>M</u>etastatic <u>Br</u>east Cancer Study <u>A</u>ssessing Physician's <u>C</u>hoice Versus <u>E</u>ribulin; PFS, progression-free survival; HER2 = human epidermal growth factor receptor 2; IV = intravenous

Cortes J et al. Lancet 2011; 377: 914–23.


EMBRACE: OS Updated Analysis^{1,2}

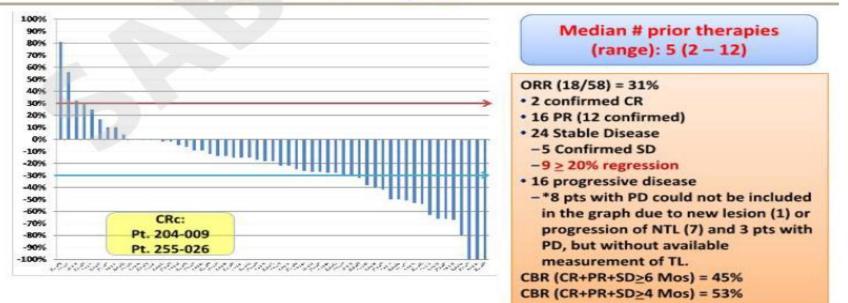

Analysis occurred at 589 events (deaths), representing 77% of the ITT population *Nominal P value from stratified log-rank test

CI = confidence interval; HR = hazard ratio; ITT = intent-to-treat; OS = overall survival; TPC = treatment of physician's choice 1. Cortes J *et al. Lancet*. 2011; 377: 914–23. 2. Twelves C *et al. Cancer Res* 2010; 70(24):Abstract # P6-14-8.

PFS results in EMBRACE trial

Anti-Trop2 ADC (sacitumumab govitecan)

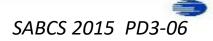
Safety and Efficacy of Anti-Trop-2 Antibody Drug Conjugate, Sacituzumab Govitecan (IMMU-132), in Heavily Pretreated Patients with TNBC

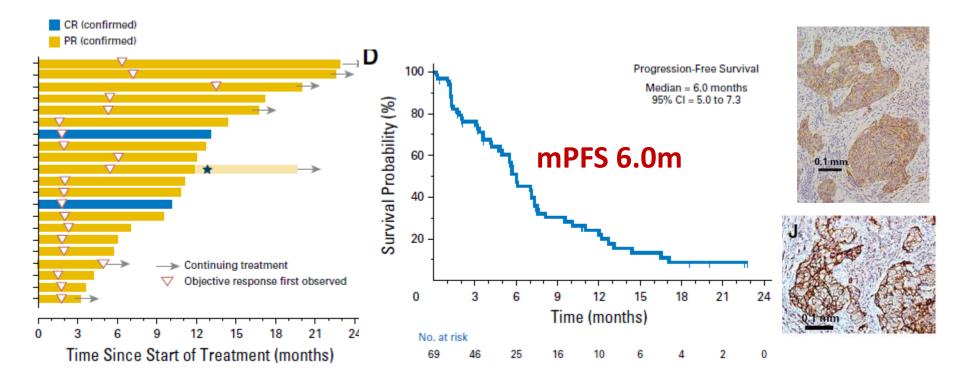

Aditya Bardia¹, Jennifer R. Diamond², Ingrid A. Mayer³, Alexander N. Starodub⁴, Rebecca Moroose⁵, Steven Isakoff¹, Allyson J. Ocean⁶, Michael J. Guarino⁷, Jordan D. Berlin³, Wells A. Messersmith², Sajeve S. Thomas⁵, Joyce A. O'Shaughnessy⁸, Kevin Kalinsky⁹, Matthew Maurer⁹, Jenny C. Chang¹⁰, Andres Forero¹¹, Tiffany Traina¹², Ayca Gucalp¹², Francois Wilhelm¹³, William A. Wegener¹³, Pius Maliakal¹³, Robert M. Sharkey¹³, David M. Goldenberg¹³, Linda T. Vahdat⁶

¹Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA; ²University of Colorado Cancer Center, Aurora, CO; ³Vanderbilt-Ingram Cancer Center, Nashville, TN; ⁴Indiana University Health Center for Cancer Care, Goshen, IN; ⁵UF Health Cancer Center, Orlando, FL; ⁶Weill Cornell Medicine, New York, NY; ⁷Helen F. Graham Cancer Center & Research Institute, Newark, DE; ⁸Baylor Sammons Cancer Center, Texas Oncology, Dallas, TX; ⁹Columbia University Medical Center, New York. NY; ¹⁰Houston Methodist Cancer Center, Houston, TX; ¹¹O'Neal-Sokol Breast Cancer Research Foundation of Alabama Endowed Professorship, University of Alabama at Birmingham, Birmingham, Al; ¹²Memorial Sloan Kettering Cancer Center, New York, NY; ¹³Immunomedics, Inc., Morris Plains, NJ

SABCS 2015 PD3-06

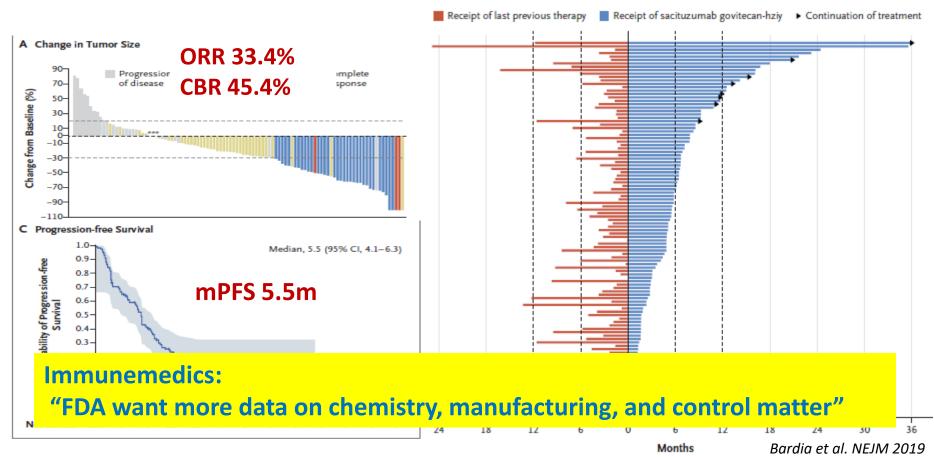
Best Response by RECIST 1.1 (% Change From Baseline)


Post-Taxane; ≥2 Prior Lines, 10 mg/kg QW

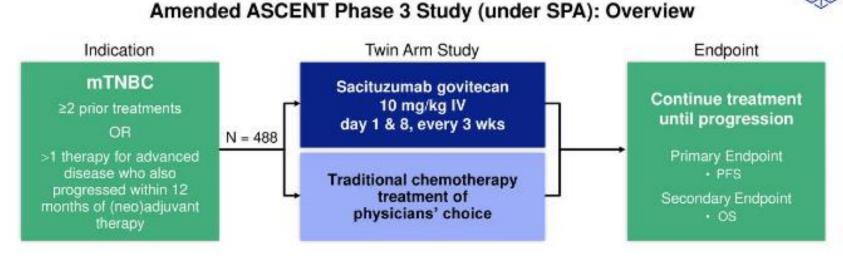

60 patients: 2 excluded because <3 doses

58 assessable patients

47 patients represented in graph; *11 of 16 pts with PD not shown



FDA Approved fast track status



Bardia et al. JCO 2017

Benefit maintained in expanded cohort

mTNBC Confirmatory Study of Sacituzumab Govitecan vs. Physicians' Choice (ASCENT) is Well Underway

- · First patient dosed in November 2017 in U.S.
- SPA protocol accepted by EU regulatory authority
- Clinical trial accruing globally

Take home message

- PARPi for gBRCA1/2 mutations (not just TNBC)
 - family history is the key, but generally higher in TNBC
 - With significant PFS benefit (~7m), ORR 60%, well tolerated
- Atezolizumab (anti-PDL1) in combination with nab-paclitaxel
 - -1^{st} line setting, in PDL1(+) pts, IC $\geq 1\%$ by SP142 assay
 - PFS (HR 0.6) and OS (HR 0.7) survival benefit
 - Also the 1st approved ICI in MBC
- sacitumumab govitecan: anti-Trop 2 ADC
 - Phase III ongoing
 - But promising phase 1 result with ORR 30%, PFS ~6months

Thanks For Your Attention!